Siempre es fácil apreciar errores de previsión cuando las cosas ya han ocurrido. Especialmente, tras un incidente de tal magnitud como el que ha afectado a la central nuclear de Fukushima. Una vez se haya superado la actual amenaza nuclear, y tras descontar la fuerza destructora del terremoto y el posterior tsunami, el objetivo inmediato será aprender de los eventuales errores de diseño y de prevención de riesgos que se hayan podido cometer para intentar evitarlos en el futuro.
Lo que más sorprende a un profano como yo es que, el país que acuñó la palabra tsunami, y que aprendió a vivir con la constante amenaza de terremotos y maremotos, diseñase una central tan desprotegida del mar.
Viendo la fotografía aérea de la central, con el atrevimiento que da la ignorancia, y con el evidente desprecio a los costes que debe presidir la prevención de un riesgo tan grave como el nuclear, me atrevo a plantear las siguientes cuestiones:
1. La propia foto aérea de la central
Me extraña que la zona no aparezca pixelada en Google Maps. Tratándose de una infraestructura crítica y a la vez, de un objetivo militar, se supone que los gobiernos deberían preocuparse de que los suministradores de estos servicios de la sociedad de la información oculten este tipo de instalaciones y las zonas adyacentes.
2. El número de reactores
Supongo que se producirán muchas economías de escala, pero me parece excesiva la concentración de reactores en tan poco espacio. Ello tiene que incrementar el riesgo de que una catástrofe natural afecte a más de un reactor, como así ha ocurrido, y dificultar las maniobras de acceso, extinción de incendios, refrigeración de emergencia, etc. Es posible que los equipos de emergencia que están actuando a la vez en los cuatro reactores afectados estén entorpeciéndose entre ellos. Aunque también es posible que sean más eficientes trabajando juntos.
3. La alineación de los reactores
Teniendo en cuenta que la principal amenaza proviene del mar, resulta raro ver una alineación de los reactores de forma paralela a la costa. Parece que estén esperando la ola con los brazos abiertos. Tal vez una alineación perpendicular a la costa ofrecería un frente más reducido que permitiría ser protegido de manera más eficiente. En otras palabras, si yo tuviese que enfrentarme a una gran ola, preferiría ir en un barco situado con la proa contra la ola antes que en uno situado en paralelo a la ola.
4. La ausencia de defensas
La imagen de la central es de total desamparo frente a las inclemencias del mar. Los diques no parecen diferentes de los que podría tener cualquier puerto del Mediterráneo. Pero aquí la diferencia es que la central se encuentra en una de las zonas con mayor probabilidad de tsunami del mundo. Ante una ola de diez metros de altura poco se puede hacer, pero con una alineación perpendicular a la costa y un frente máximo de 200 metros, tal vez hubiese sido posible construir un dique más alto y en forma de cuña que desviase la fuerza del agua hacia los lados. Repito que es pura intuición basada en el diseño de los barcos, en la estructura del blindaje frontal de los carros de combate y en los muros en forma de estrella de las antiguas ciudadelas militares, destinados a resistir el impacto directo de la artillería.
5. La paradoja de una planta generadora de electricidad que se queda sin electricidad
A un profano como yo le resulta difícil de creer que una central destinada a generar electricidad pueda quedarse sin la energía que ella misma genera. Si los submarinos nucleares tienen una autonomía que se cuenta en meses, ¿cómo puede una central nuclear tener una autonomía que se cuente en horas si la principal amenaza es conocida, está prevista y se conoce su techo máximo?. Debido a la parada de emergencia, la central no producía electricidad, y los generadores resultaron dañados por el tsunami, pero la energía eléctrica necesaria para la bomba de refrigeración se puede acumular para seguir teniendo suministro eléctrico por un tiempo muy superior a las 8 horas.
6. Baterías insuficientes y enchufes no normalizados
Como he dicho, parece ser que las baterías que debían alimentar las bombas de refrigeración tenían una duración máxima de 8 horas y cuando se agotaron se recurrió a generadores móviles, que inicialmente no pudieron ser conectados porque los conectores eran diferentes a los de las bombas de refrigeración.
7. Ausencia de generadores eléctricos subterráneos
Antes de recurrir a las baterías, las bombas del circuito de refrigeración se habían quedado sin electricidad porque los generadores habían sido afectados por el tsunami. Eso significa que estaban en la superficie, ya que si hubiesen estado protegidos en un búnker subterráneo, tan blindado y hermético como merece el último recurso energético existente para mantener baja la temperatura del núcleo, no habrían sufrido un impacto directo de la ola.
8. Desprotección de las instalaciones críticas para la seguridad de la central
Con la debida prudencia, concluiría que lo ideal habría sido mantener todas las instalaciones implicadas en la seguridad del reactor en una sala subterránea y blindada, protegida frente a terremotos y maremotos, que formase una sola pieza con el búnker del reactor, y que dispusiese de los mismos elementos de seguridad. ¿De qué sirve que el reactor esté protegido por una cúpula capaz de resistir el impacto directo de un misil si el circuito de refrigeración, los generadores que permiten su funcionamiento y los restantes elementos de seguridad tienen un nivel de protección inferior?. Una cadena es tan fuerte como el más débil de sus eslabones, y en este caso, el eslabón más débil parece que fue la protección de los generadores de electricidad.
La enseñanza de este accidente, aplicable a la prevención de cualquier tipo de riesgo, está ya definida en la llamada ley de Murphy, y consiste en asumir que, ante una lista de posibles fatalidades, existe la opción de que todas ellas tengan lugar de forma coetánea o secuencial.
En un diseño de defensa en profundidad como el de Fukushima, las amenazas superaron una sucesión de bastiones y líneas de defensa que parecían insuperables en su conjunto:
- La seguridad de la central de Fukushima fue diseñada para aguantar un terremoto de una potencia 8,2 y el terremoto fue de 8,9.
- Ante el terremoto, se produjo la parada de emergencia de los reactores y las turbinas dejaron de producir electricidad.
- El circuito de refigeración dejó de recibir suministro eléctrico.
- Se pusieron en marcha los generadores diésel externos.
- Entonces vino el tsunami y averió los generadores externos.
- La última línea de defensa eran las baterías, que funcionaron ocho horas antes de agotarse.
- Entonces se recurrió a los generadores móviles, cuyos conectores no coincidían con los de las bombas de refrigeración.
- Cuando se consiguió recuperar el circuito de refrigeración, había pasado un tiempo precioso.
Todas las líneas defensivas fueron superadas por una cadena de fenómenos naturales previsibles, pero con una magnitud y una sucesión en el tiempo que resultaron letales. Si ante acciones de la naturaleza, y por lo tanto no provocadas intencionadamente por el hombre, el efecto es tan devastador, la pregunta inmediata es: ¿qué sucedería ante un ataque intencionado que tuviese en cuenta todas estas vulnerabilidades, algunas de ellas apreciables a través de Google Maps?
Teniendo en cuenta la progresiva implantación de los protocolos TCP/IP en los sistemas de control SCADA, ¿podría tener éxito un ataque a través de Internet orientado a producir una parada de emergencia del reactor, dejar el circuito de refrigeración sin energía, impedir la puesta en marcha de los generadores externos e interferir las comunicaciones de los equipos de emergencia?
A principios de los ochenta, tuve la suerte de visitar las obras de la central nuclear de Ascó II y pasé un buen rato bajo la cúpula que más tarde albergaría el núcleo del reactor. La emoción que sentí fue parecida a la del que está en un lugar que nunca ha pisado el hombre. Pero en aquel momento único, la emoción venía dada, en realidad, por la absoluta certeza de estar en un lugar que nunca más volvería a pisar el ser humano.